利用opentstool计算混沌时间序列的嵌入时间及维数
C++ 16 次浏览
Python语言中可使用时间序列预测的方法包括平稳性检验、自相关和偏自相关分析、建模与预测。
Python 26 次浏览
这是通过混沌序列的方式置乱水印的算法,且能够达到较好的效果This an algorithm that scrambles watermarks by means of chaotic sequences, and can achieve better results
C 29 次浏览
时间序列分析是一种用于分析随时间变化的数据的方法,理解数据模式、提取有用信息并进行预测。 时间序列预测则关注于利用历史数据对未来趋势进行预测, 在金融、气象、交通等领域具有广泛应用。
Actionscript 26 次浏览
多元时间序列是指包含多个相关时间序列的数据集。 在 Python 中,可以使用各种库和技术来分析多元时间序列数据,例如: 数据处理和可视化: Pandas、NumPy、Matplotlib 统计建模: statsmodels 机器学习: scikit-learn, TensorFlow, PyTo
Python 19 次浏览
import pandas #读取数据,指定日期为索引列data = pandas.read_csv( 'D:\\DATA\\pycase\\number2\\9.3\\Data.csv' , index_col='日期' ) #绘图过程中import matplotlib.pyplot as pl
Python 20 次浏览