Dial Key and SMS Icon Recognition with TensorFlow

In the field of machine learning, TensorFlow is an extremely important open-source library developed and maintained by Google. It provides a rich set of tools and interfaces that enable data scientists and engineers to build complex deep learning models, perform efficient computations, and carry out large-scale parallel processing. In this project titled 'Dial Key and SMS Icon Recognition with TensorFlow', we are clearly addressing an image recognition problem, specifically the recognition of two distinct objects — the dial key and the SMS icon.

The core of TensorFlow is the data flow graph, a declarative programming model where users define the computational flow and execute operations efficiently at runtime. In this project, we may need to create a data flow graph to handle image data, including preprocessing, feature extraction, and the training process. Image recognition typically involves Convolutional Neural Networks (CNNs), which specialize in processing image data using convolutional layers to extract features, pooling layers to reduce dimensions, and fully connected layers for classification. For dial key and SMS icon recognition, a custom CNN model may be built to learn key visual features of these two icons using multiple convolutional and pooling layers.

Preprocessing steps are crucial, as raw image data often needs to undergo normalization, scaling, and cropping to fit the model's input requirements. This may include normalizing pixel values to the range [0, 1] or [-1, 1], and resizing images to meet the model’s input specifications. During the training process, a large set of labeled images (containing the dial key and SMS icon) will be used. These images will be divided into a training set, validation set, and test set. The training set is used to train the model, the validation set helps tune parameters to prevent overfitting, and the test set is used to evaluate the model’s generalization ability. Model performance is typically measured using accuracy, loss functions, and other metrics.

Once the model is trained and achieves satisfactory performance, it can be deployed to real-world applications. This may involve optimizing and quantizing the model to run on resource-limited devices, such as mobile devices. TensorFlow offers tools like TensorFlow Lite to achieve this goal, converting the model into a lightweight format suitable for mobile platforms. Furthermore, continuous improvement and updates to the model are essential. As new data is collected, the model can be retrained periodically to improve its recognition ability for new types of icons or under changing conditions. This project demonstrates how to leverage TensorFlow to build and train a deep learning model specifically for recognizing dial key and SMS icon images. It covers the entire process from data preprocessing to model construction, training, evaluation, and deployment, showcasing TensorFlow’s powerful capability in solving image recognition problems. Through this practical experience, we can gain a deeper understanding of the application of deep learning in image recognition and enhance our professional skills in the fields of machine learning and AI.

zip
拨号键与短信息图标的识别(tensorflow).zip 预估大小:90个文件
folder
拨号键与短信息图标的识别(tensorflow) 文件夹
folder
数据集 文件夹
folder
calldata 文件夹
file
QQ图片20180403174527.png 13KB
file
QQ图片20180403174259.png 35KB
file
QQ图片20180403174239.png 22KB
file
call.3f718852d446b9ea19ca273626ed2a85 (5).png 103KB
file
call.3f718852d446b9ea19ca273626ed2a85 (1).png 190KB
file
call.3f718852d446b9ea19ca273626ed2a85 (14).jpg 75KB
file
QQ图片20180403174004.png 32KB
file
QQ图片20180403175057.png 12KB
file
call.A6.dd2d59ac1a2c2ba9e01dd6ff7957af0b.jpg 8KB
file
call.ed8e4bacec80445d4ed5c6dbdcdc581d.png 5KB
file
call.3f718852d446b9ea19ca273626ed2a85 (4).jpg 31KB
file
call.3f718852d446b9ea19ca273626ed2a85 (19).jpg 44KB
file
QQ图片20180403173839.png 17KB
file
QQ图片20180403174102.png 20KB
file
call.3f718852d446b9ea19ca273626ed2a85 (3).png 15KB
file
call.3f718852d446b9ea19ca273626ed2a85 (5).jpg 57KB
file
QQ图片20180403174421.png 30KB
file
QQ图片20180403174125.png 10KB
file
QQ图片20180403174537.png 4KB
file
call.3f718852d446b9ea19ca273626ed2a85 (9).jpg 141KB
file
call.3f718852d446b9ea19ca273626ed2a85 (17).jpg 125KB
file
call.3f718852d446b9ea19ca273626ed2a85 (25).jpg 8KB
file
QQ图片20180403174512.png 17KB
file
QQ图片20180403175030.png 29KB
file
QQ图片20180403174232.png 17KB
file
call.3f718852d446b9ea19ca273626ed2a85 (4).png 24KB
file
QQ图片20180403174222.png 20KB
file
QQ图片20180403174017.png 14KB
file
QQ图片20180403174622.png 18KB
file
call.3f718852d446b9ea19ca273626ed2a85 (18).jpg 41KB
file
QQ图片20180403174154.png 30KB
file
call.3f718852d446b9ea19ca273626ed2a85 (22).jpg 93KB
file
call.3f718852d446b9ea19ca273626ed2a85 (20).jpg 23KB
file
call.3f718852d446b9ea19ca273626ed2a85 (2).jpg 13KB
file
call.e9e1185c8fee170a445469e4aeac16de.jpg 99KB
file
QQ图片20180403175235.png 30KB
file
QQ图片20180403174118.png 22KB
file
call.3f718852d446b9ea19ca273626ed2a85 (21).jpg 78KB
file
QQ图片20180403174205.png 17KB
file
QQ图片20180403174131.png 15KB
file
call.3f718852d446b9ea19ca273626ed2a85 (7).png 5KB
file
call.3f718852d446b9ea19ca273626ed2a85 (11).jpg 58KB
file
call.3f718852d446b9ea19ca273626ed2a85 (13).jpg 43KB
file
call.3f718852d446b9ea19ca273626ed2a85 (1).jpg 64KB
file
QQ图片20180403174503.png 13KB
file
call.3f718852d446b9ea19ca273626ed2a85 (6).jpg 14KB
file
call.3f718852d446b9ea19ca273626ed2a85 (16).jpg 78KB
file
QQ图片20180403174246.png 22KB
file
call.3f718852d446b9ea19ca273626ed2a85 (2).png 18KB
file
call.5b2e14fa6056e55a8ef41c0f24820ebd.jpg 79KB
file
call.3f718852d446b9ea19ca273626ed2a85 (30).jpg 45KB
file
call.3f718852d446b9ea19ca273626ed2a85 (27).jpg 144KB
file
QQ图片20180403173938.png 20KB
file
call.3f718852d446b9ea19ca273626ed2a85 (15).jpg 55KB
file
QQ图片20180403174044.png 14KB
file
QQ图片20180403173925.png 17KB
file
QQ图片20180403174336.png 26KB
file
call.3f718852d446b9ea19ca273626ed2a85 (29).jpg 13KB
file
call.3f718852d446b9ea19ca273626ed2a85 (23).jpg 76KB
file
QQ图片20180403174551.png 17KB
file
call.3f718852d446b9ea19ca273626ed2a85 (24).jpg 14KB
file
QQ图片20180403174053.png 36KB
file
QQ图片20180403173952.png 14KB
file
QQ图片20180403174111.png 6KB
file
call.3f718852d446b9ea19ca273626ed2a85 (10).jpg 80KB
file
call.3f718852d446b9ea19ca273626ed2a85 (3).jpg 79KB
file
QQ图片20180403175200.png 14KB
file
QQ图片20180403174211.png 16KB
file
call.3f718852d446b9ea19ca273626ed2a85 (12).jpg 6KB
file
call.3f718852d446b9ea19ca273626ed2a85 (26).jpg 99KB
file
QQ图片20180403174659.png 15KB
file
QQ图片20180403175110.png 28KB
file
call.3f718852d446b9ea19ca273626ed2a85 (8).jpg 13KB
file
QQ图片20180403174943.png 38KB
file
call.3f718852d446b9ea19ca273626ed2a85 (28).jpg 6KB
file
call.3f718852d446b9ea19ca273626ed2a85 (7).jpg 77KB
file
call.3f718852d446b9ea19ca273626ed2a85.jpg 64KB
file
QQ图片20180403174606.png 28KB
file
QQ图片20180403174354.png 16KB
file
call.3f718852d446b9ea19ca273626ed2a85 (6).png 20KB
folder
代码 文件夹
folder
mycallphonetensorflow 文件夹
file
main.py 5KB
folder
.idea 文件夹
file
misc.xml 185B
file
workspace.xml 24KB
file
mycallphonetensorflow.iml 398B
folder
inspectionProfiles 文件夹
file
Project_Default.xml 410B
file
modules.xml 294B
folder
__pycache__ 文件夹
file
loadimageandtest.cpython-37.pyc 3KB
file
shenjingwangluomodel.cpython-37.pyc 3KB
file
loadimageandtest.py 8KB
file
shenjingwangluomodel.py 6KB
...
zip 文件大小:2.6MB